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Health Insurance Products

e Medical (the big one)
e Dental

e Disability

e Critical lliness

e Long-Term Care

e Workers Comp (unofficially)
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Use of Predictive Models

Primary focus of predictive modeling for health
insurance has been claims management

Early adopters began 15-20 years ago
Traction within the past 5 years

Actuarial applications are lagging




Claims Management
Applications
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Claims Management Considerations

e Predictive modeling is a decision support tool
to optimize claims management resources

e |dentify claims where intervention can have
the greatest impact

e Building accurate models is not enough

e The key driver of success is implementation

e User buy-in is critical!
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Claims Management Applications

1. Disease Management

2. Provider Fraud Detection
3. Return to Work
4

. Benchmarking
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1. Disease Management

e QObjective is early identification of plan
members where case management can have
the greatest impact in:

e Preserving health

e Reducing medical expenses




Case Study: Pithey Bowes

e Predictive model related low medication adherence
to increases in expenses for patients with diabetes

e Changed pharmaceutical benefit design to reduce
patient out-of-pocket costs

e Preliminary results after 2-3 years
e Medication possession rates have increased significantly
e Total pharmacy costs reduced 7%, emerg visits down 26%

e Direct costs per plan participant with diabetes down 6%

Source: Reducing Patient Drug Acquisition Costs Can Lower Diabetes Health Claims,

John J. Mahoney. MD, The American Journal of Managed Care, August 2005
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2. Provider Fraud Detection

e Supervised approach will identify providers
with profiles similar to known fraudsters

e Unsupervised approach will isolate providers
with atypical practice profiles

e Allow SIU to focus on investigating suspicious
providers rather than manually searching for
suspicious providers
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PCA - Identifying Atypical Claims

Graph of Claims
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PCA - Identifying Atypical Dentists

Graph of Dentists
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Clusters — Identifying Atypical Dentists

Proportion of General Work by Cluster
K-Means Clustering
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3. Return to Work Claims Scoring

e Based on its specific attributes, a claim will be
scored between 1 and 10

10 Represents
highest potential of
recovery

1 Represents lowest
potential of
recovery

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
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Claims Near Predicted Duration

e |dentify claims nearing predicted duration
e EG: current duration 3-ém, 6M score = 7-10

Claim # Analyst Duration Age Gender Score6M
001234 Susan 3 months 55 M 7
003462 Ted 3 months 47 M 9
009541 Jackie 4 months 23 F 8
015844 Robert 4 months 60 F 7
024689 Lisa 5 months 32 M 10

e Similar report for claims beyond predicted duration
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Workload Allocation

e Claims can be allocated by degree of challenge

e Claims scored 4-7 more difficult and time-intensive —
allocate to more experienced and expert claim analysts

e Claims scored 1-3 and 8-10 simpler — allocate to less
experienced claim analysts
e Measure relative workload of claims personnel

e Use claim scores as an indicator of complexity

e Determine caseload on a complexity-weighted basis

~ |ANALYTICS| 17



Workload Allocation

e Measure workload on a weighted basis:

Weight 05 05 10 15 20 20 20 15 10 05
Analyst # Claims Weighted Claims
Susan 100 134
Robert 100 126
Ted 100 111
Jackie 100 87
Lisa 100 73
Morris 100 59
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4. Benchmarking

e Predictive modeling can be used to normalize
for differences in business mix to allow for
more meaningful comparisons

e Multi-company benchmarking of Group LTD
claimant recovery experience

e Benchmark physicians on total cost of treatment
for various ailments
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LTD Claim Recovery Benchmarking

Performance by Company
Performance = Expected Recovery Rate - Average Recovery Rate
0 - 24 months
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Difference of 12% between best and worst performers
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Data Sources
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Internal Data

Employer:

Medical Providers: Other Internal Sources:
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External Data

Industry data

Credit score and other financial data
MIB

Prescription drug history

Criminal records

Census and other geospatial information
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Questions
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